408 research outputs found

    Mode transitions in a model reaction-diffusion system driven by domain growth and noise

    Get PDF
    Pattern formation in many biological systems takes place during growth of the underlying domain. We study a specific example of a reaction–diffusion (Turing) model in which peak splitting, driven by domain growth, generates a sequence of patterns. We have previously shown that the pattern sequences which are presented when the domain growth rate is sufficiently rapid exhibit a mode-doubling phenomenon. Such pattern sequences afford reliable selection of certain final patterns, thus addressing the robustness problem inherent of the Turing mechanism. At slower domain growth rates this regular mode doubling breaks down in the presence of small perturbations to the dynamics. In this paper we examine the breaking down of the mode doubling sequence and consider the implications of this behaviour in increasing the range of reliably selectable final patterns

    Minimal speed of fronts of reaction-convection-diffusion equations

    Get PDF
    We study the minimal speed of propagating fronts of convection reaction diffusion equations of the form ut+Όϕ(u)ux=uxx+f(u)u_t + \mu \phi(u) u_x = u_{xx} +f(u) for positive reaction terms with fâ€Č(0>0f'(0 >0. The function ϕ(u)\phi(u) is continuous and vanishes at u=0u=0. A variational principle for the minimal speed of the waves is constructed from which upper and lower bounds are obtained. This permits the a priori assesment of the effect of the convective term on the minimal speed of the traveling fronts. If the convective term is not strong enough, it produces no effect on the minimal speed of the fronts. We show that if fâ€Čâ€Č(u)/fâ€Č(0)+Όϕâ€Č(u)<0f''(u)/\sqrt{f'(0)} + \mu \phi'(u) < 0, then the minimal speed is given by the linear value 2fâ€Č(0)2 \sqrt{f'(0)}, and the convective term has no effect on the minimal speed. The results are illustrated by applying them to the exactly solvable case ut+ÎŒuux=uxx+u(1−u)u_t + \mu u u_x = u_{xx} + u (1 -u). Results are also given for the density dependent diffusion case ut+Όϕ(u)ux=(D(u)ux)x+f(u)u_t + \mu \phi(u) u_x = (D(u)u_x)_x +f(u).Comment: revised, new results adde

    Can we avoid high coupling?

    Get PDF
    It is considered good software design practice to organize source code into modules and to favour within-module connections (cohesion) over between-module connections (coupling), leading to the oft-repeated maxim "low coupling/high cohesion". Prior research into network theory and its application to software systems has found evidence that many important properties in real software systems exhibit approximately scale-free structure, including coupling; researchers have claimed that such scale-free structures are ubiquitous. This implies that high coupling must be unavoidable, statistically speaking, apparently contradicting standard ideas about software structure. We present a model that leads to the simple predictions that approximately scale-free structures ought to arise both for between-module connectivity and overall connectivity, and not as the result of poor design or optimization shortcuts. These predictions are borne out by our large-scale empirical study. Hence we conclude that high coupling is not avoidable--and that this is in fact quite reasonable

    A Mathematical Model of Liver Cell Aggregation In Vitro

    Get PDF
    The behavior of mammalian cells within three-dimensional structures is an area of intense biological research and underpins the efforts of tissue engineers to regenerate human tissues for clinical applications. In the particular case of hepatocytes (liver cells), the formation of spheroidal multicellular aggregates has been shown to improve cell viability and functionality compared to traditional monolayer culture techniques. We propose a simple mathematical model for the early stages of this aggregation process, when cell clusters form on the surface of the extracellular matrix (ECM) layer on which they are seeded. We focus on interactions between the cells and the viscoelastic ECM substrate. Governing equations for the cells, culture medium, and ECM are derived using the principles of mass and momentum balance. The model is then reduced to a system of four partial differential equations, which are investigated analytically and numerically. The model predicts that provided cells are seeded at a suitable density, aggregates with clearly defined boundaries and a spatially uniform cell density on the interior will form. While the mechanical properties of the ECM do not appear to have a significant effect, strong cell-ECM interactions can inhibit, or possibly prevent, the formation of aggregates. The paper concludes with a discussion of our key findings and suggestions for future work

    The McKean-Vlasov Equation in Finite Volume

    Get PDF
    We study the McKean--Vlasov equation on the finite tori of length scale LL in dd--dimensions. We derive the necessary and sufficient conditions for the existence of a phase transition, which are based on the criteria first uncovered in \cite{GP} and \cite{KM}. Therein and in subsequent works, one finds indications pointing to critical transitions at a particular model dependent value, ξ♯\theta^{\sharp} of the interaction parameter. We show that the uniform density (which may be interpreted as the liquid phase) is dynamically stable for Ξ<ξ♯\theta < \theta^{\sharp} and prove, abstractly, that a {\it critical} transition must occur at Ξ=ξ♯\theta = \theta^{\sharp}. However for this system we show that under generic conditions -- LL large, d≄2d \geq 2 and isotropic interactions -- the phase transition is in fact discontinuous and occurs at some \theta\t < \theta^{\sharp}. Finally, for H--stable, bounded interactions with discontinuous transitions we show that, with suitable scaling, the \theta\t(L) tend to a definitive non--trivial limit as L→∞L\to\infty

    Self-gravitating Brownian particles in two dimensions: the case of N=2 particles

    Full text link
    We study the motion of N=2 overdamped Brownian particles in gravitational interaction in a space of dimension d=2. This is equivalent to the simplified motion of two biological entities interacting via chemotaxis when time delay and degradation of the chemical are ignored. This problem also bears some similarities with the stochastic motion of two point vortices in viscous hydrodynamics [Agullo & Verga, Phys. Rev. E, 63, 056304 (2001)]. We analytically obtain the density probability of finding the particles at a distance r from each other at time t. We also determine the probability that the particles have coalesced and formed a Dirac peak at time t (i.e. the probability that the reduced particle has reached r=0 at time t). Finally, we investigate the variance of the distribution and discuss the proper form of the virial theorem for this system. The reduced particle has a normal diffusion behaviour for small times with a gravity-modified diffusion coefficient =r_0^2+(4k_B/\xi\mu)(T-T_*)t, where k_BT_{*}=Gm_1m_2/2 is a critical temperature, and an anomalous diffusion for large times ~t^(1-T_*/T). As a by-product, our solution also describes the growth of the Dirac peak (condensate) that forms in the post-collapse regime of the Smoluchowski-Poisson system (or Keller-Segel model) for T<T_c=GMm/(4k_B). We find that the saturation of the mass of the condensate to the total mass is algebraic in an infinite domain and exponential in a bounded domain.Comment: Revised version (20/5/2010) accepted for publication in EPJ

    Come back Marshall, all is forgiven? : Complexity, evolution, mathematics and Marshallian exceptionalism

    Get PDF
    Marshall was the great synthesiser of neoclassical economics. Yet with his qualified assumption of self-interest, his emphasis on variation in economic evolution and his cautious attitude to the use of mathematics, Marshall differs fundamentally from other leading neoclassical contemporaries. Metaphors inspire more specific analogies and ontological assumptions, and Marshall used the guiding metaphor of Spencerian evolution. But unfortunately, the further development of a Marshallian evolutionary approach was undermined in part by theoretical problems within Spencer's theory. Yet some things can be salvaged from the Marshallian evolutionary vision. They may even be placed in a more viable Darwinian framework.Peer reviewedFinal Accepted Versio

    Finite-time blowup in a supercritical quasilinear parabolic-parabolic Keller-Segel system in dimension 2

    Get PDF
    In this paper we prove finite-time blowup of radially symmetric solutions to the quasilinear parabolic-parabolic two-dimensional Keller-Segel system for any positive mass. This is done in case of nonlinear diffusion and also in the case of nonlinear cross-diffusion provided the nonlinear chemosensitivity term is assumed not to decay. Moreover, it is shown that the above-mentioned lack of non-decay assumption is essential with respect to keeping the dichotomy finite-time blowup against boundedness of solutions. Namely, we prove that without the non-decay assumption possible asymptotic behaviour of solutions includes also infinite-time blowup.Comment: 14 page
    • 

    corecore